skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dwork, Cynthia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bun, Mark (Ed.)
    Given a differentially private unbiased estimate q̃ = q(D) +ν of a statistic q(D), we wish to obtain unbiased estimates of functions of q(D), such as 1/q(D), solely through post-processing of q̃, with no further access to the confidential dataset D. To this end, we adapt the deconvolution method used for unbiased estimation in the statistical literature, deriving unbiased estimators for a broad family of twice-differentiable functions - those that are tempered distributions - when the privacy-preserving noise ν is drawn from the Laplace distribution (Dwork et al., 2006). We further extend this technique to functions other than tempered distributions, deriving approximately optimal estimators that are unbiased for values in a user-specified interval (possibly extending to ± ∞). We use these results to derive an unbiased estimator for private means when the size n of the dataset is not publicly known. In a numerical application, we find that a mechanism that uses our estimator to return an unbiased sample size and mean outperforms a mechanism that instead uses the previously known unbiased privacy mechanism for such means (Kamath et al., 2023). We also apply our estimators to develop unbiased transformation mechanisms for per-record differential privacy, a privacy concept in which the privacy guarantee is a public function of a record’s value (Seeman et al., 2024). Our mechanisms provide stronger privacy guarantees than those in prior work (Finley et al., 2024) by using Laplace, rather than Gaussian, noise. Finally, using a different approach, we go beyond Laplace noise by deriving unbiased estimators for polynomials under the weak condition that the noise distribution has sufficiently many moments. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. A reconstruction attack on a private dataset D takes as input some publicly accessible information about the dataset and produces a list of candidate elements of D . We introduce a class of data reconstruction attacks based on randomized methods for nonconvex optimization. We empirically demonstrate that our attacks can not only reconstruct full rows of D from aggregate query statistics Q ( D )∈ℝ m but can do so in a way that reliably ranks reconstructed rows by their odds of appearing in the private data, providing a signature that could be used for prioritizing reconstructed rows for further actions such as identity theft or hate crime. We also design a sequence of baselines for evaluating reconstruction attacks. Our attacks significantly outperform those that are based only on access to a public distribution or population from which the private dataset D was sampled, demonstrating that they are exploiting information in the aggregate statistics Q ( D ) and not simply the overall structure of the distribution. In other words, the queries Q ( D ) are permitting reconstruction of elements of this dataset, not the distribution from which D was drawn. These findings are established both on 2010 US decennial Census data and queries and Census-derived American Community Survey datasets. Taken together, our methods and experiments illustrate the risks in releasing numerically precise aggregate statistics of a large dataset and provide further motivation for the careful application of provably private techniques such as differential privacy. 
    more » « less
  3. Differential privacy provides a rigorous framework for privacy-preserving data analysis. This paper proposes the first differentially private procedure for controlling the false discovery rate (FDR) in multiple hypothesis testing. Inspired by the Benjamini-Hochberg procedure (BHq), our approach is to first repeatedly add noise to the logarithms of the p-values to ensure differential privacy and to select an approximately smallest p-value serving as a promising candidate at each iteration; the selected p-values are further supplied to the BHq and our private procedure releases only the rejected ones. Moreover, we develop a new technique that is based on a backward submartingale for proving FDR control of a broad class of multiple testing procedures, including our private procedure, and both the BHq step- up and step-down procedures. As a novel aspect, the proof works for arbitrary dependence between the true null and false null test statistics, while FDR control is maintained up to a small multiplicative factor. 
    more » « less
  4. null (Ed.)
    Differential privacy is at a turning point. Implementations have been successfully leveraged in private industry, the public sector, and academia in a wide variety of applications, allowing scientists, engineers, and researchers the ability to learn about populations of interest without specifically learning about these individuals. Because differential privacy allows us to quantify cumulative privacy loss, these differentially private systems will, for the first time, allow us to measure and compare the total privacy loss due to these personal data-intensive activities. Appropriately leveraged, this could be a watershed moment for privacy. Like other technologies and techniques that allow for a range of instantiations, implementation details matter. When meaningfully implemented, differential privacy supports deep data-driven insights with minimal worst-case privacy loss. When not meaningfully implemented, differential privacy delivers privacy mostly in name. Using differential privacy to maximize learning while providing a meaningful degree of privacy requires judicious choices with respect to the privacy parameter epsilon, among other factors. However, there is little understanding of what is the optimal value of epsilon for a given system or classes of systems/purposes/data etc. or how to go about figuring it out. To understand current differential privacy implementations and how organizations make these key choices in practice, we conducted interviews with practitioners to learn from their experiences of implementing differential privacy. We found no clear consensus on how to choose epsilon, nor is there agreement on how to approach this and other key implementation decisions. Given the importance of these implementation details there is a need for shared learning amongst the differential privacy community. To serve these purposes, we propose the creation of the Epsilon Registry—a publicly available communal body of knowledge about differential privacy implementations that can be used by various stakeholders to drive the identification and adoption of judicious differentially private implementations. 
    more » « less
  5. null (Ed.)
    Robust optimization has been widely used in nowadays data science, especially in adversarial training. However, little research has been done to quantify how robust optimization changes the optimizers and the prediction losses comparing to standard training. In this paper, inspired by the influence function in robust statistics, we introduce the Adversarial Influence Function (AIF) as a tool to investigate the solution produced by robust optimization. The proposed AIF enjoys a closed-form and can be calculated efficiently. To illustrate the usage of AIF, we apply it to study model sensitivity — a quantity defined to capture the change of prediction losses on the natural data after implementing robust optimization. We use AIF to analyze how model complexity and randomized smoothing affect the model sensitivity with respect to specific models. We further derive AIF for kernel regressions, with a particular application to neural tangent kernels, and experimentally demonstrate the effectiveness of the proposed AIF. Lastly, the theories of AIF will be extended to distributional robust optimization. 
    more » « less
  6. null (Ed.)
    Robust optimization has been widely used in nowadays data science, especially in adversarial training. However, little research has been done to quantify how robust optimization changes the optimizers and the prediction losses comparing to standard training. In this paper, inspired by the influence function in robust statistics, we introduce the Adversarial Influence Function (AIF) as a tool to investigate the solution produced by robust optimization. The proposed AIF enjoys a closed-form and can be calculated efficiently. To illustrate the usage of AIF, we apply it to study model sensitivity — a quantity defined to capture the change of prediction losses on the natural data after implementing robust optimization. We use AIF to analyze how model complexity and randomized smoothing affect the model sensitivity with respect to specific models. We further derive AIF for kernel regressions, with a particular application to neural tangent kernels, and experimentally demonstrate the effectiveness of the proposed AIF. Lastly, the theories of AIF will be extended to distributional robust optimization. 
    more » « less
  7. We investigate the power of censoring techniques, first developed for learning {\em fair representations}, to address domain generalization. We examine {\em adversarial} censoring techniques for learning invariant representations from multiple "studies" (or domains), where each study is drawn according to a distribution on domains. The mapping is used at test time to classify instances from a new domain. In many contexts, such as medical forecasting, domain generalization from studies in populous areas (where data are plentiful), to geographically remote populations (for which no training data exist) provides fairness of a different flavor, not anticipated in previous work on algorithmic fairness. We study an adversarial loss function for k domains and precisely characterize its limiting behavior as k grows, formalizing and proving the intuition, backed by experiments, that observing data from a larger number of domains helps. The limiting results are accompanied by non-asymptotic learning-theoretic bounds. Furthermore, we obtain sufficient conditions for good worst-case prediction performance of our algorithm on previously unseen domains. Finally, we decompose our mappings into two components and provide a complete characterization of invariance in terms of this decomposition. To our knowledge, our results provide the first formal guarantees of these kinds for adversarial invariant domain generalization. 
    more » « less
  8. null (Ed.)
    Differential Privacy is a popular technology for privacy-preserving analysis of large datasets. DP is powerful, but it requires that the analyst interact with data only through a special interface; in particular, the analyst does not see raw data, an uncomfortable situation for anyone trained in classical statistical data analysis. In this note we discuss the (overly) simple problem of allowing a  trusted analyst to choose an ``"interesting" statistic for popular release (the actual computation of the chosen statistic will be carried out in a differentially private way). 
    more » « less